Home
Class 11
MATHS
If 1/(9!)+1/(10!)=x/(11!) then x=...

If `1/(9!)+1/(10!)=x/(11!)` then `x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1/(9!)+1/(10 !)=x/(11 !) , find xdot

If (1)/(9!)+(1)/(10!)=(x)/(11!), find x

Prove that If (1)/(9!) +(1)/( 10!) =(x)/( 11!) , Find x.

(i) If (1)/(9!)+(1)/(10!)=(n)/(11!) , find n. (ii) If (1)/(8!)+(1)/(9!)=(x)/(10!) , find x.

Prove that: (1)/(9!)+(1)/(10!)+(1)/(11!)=(122)/(11!)

Prove that: 1/(9!)+1/(10 !)+1/(11 !)=(122)/(11 !)

If ax^(10)=by^(10)=cz^(10) and (1)/(x)+(1)/(y)+(1)/(z)=1 then prove that (ax^(9)+by^(9)+cz^(9))^(1/10)=a^(1/10)+b^(1/10)+c^(1/10)

(x-3)/(9)-(x-2)/(10)=1