Home
Class 12
MATHS
If y=log(x^2+x+1)/(x^2-x+1)+2/(sqrt(3))t...

If `y=log(x^2+x+1)/(x^2-x+1)+2/(sqrt(3))t a n^(-1)((sqrt(3)x)/(1-x^2)),"f i n d"(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log((x^2+x+1)/(x^2-x+1))+2/(sqrt(3))t a n^(-1)((sqrt(3)x)/(1-x^2)), find (dy)/(dx)

If y=log(x^(2)+x+1)/(x^(2)-x+1)+(2)/(sqrt(3))tan^(-1)((sqrt(3)x)/(1-x^(2))), find (dy)/(dx)

If y=sin[2t a n^(-1){sqrt((1-x)/(1+x))}],"f i n d"(dy)/(dx)

If y=cos^(-1){(2x-3sqrt(1-x^2))/(sqrt(13))},"f i n d"(dy)/(dx)

If y=(1)/(3)"log" (x+1)/(sqrt(x^(2)-x+1))+(1)/(sqrt(3))"tan"^(-1)(2x-1)/(sqrt(3)) , show that, (dy)/(dx)=(1)/(x^(3)+1)

y=sqrt(x^(2)+1)-log((1)/(x)+sqrt(1+(1)/(x^(2)))), find (dy)/(dx)

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

If y=log sqrt((x^(2)+x+1)/(x^(2)-x+1))+(1)/(2sqrt(3)){tan^(-1)backslash(2x+1)/(sqrt(3))+tan^(-1)backslash(2x-1)/(sqrt(3))} then prove that (dy)/(dx)=(1)/(x^(4)+x^(2)+1)

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0

IF y=f(x^(2)) and f'(x)=sqrt(3x^(2)+1) , find [(dy)/(dx)]_(x=2) .