Home
Class 12
MATHS
Prove that cos32^(@) sin20^(@) + cos14...

Prove that
`cos32^(@) sin20^(@) + cos144^(@) cos2^(@) + sin68^(@) cos56^(@) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos 10^(@) cos20^(@) + sin 45^(@) cos145^(@) + sin 55^(@) cos245^(@) = 0

Prove that sin 80^(@) cos20^(@) + sin45^(@) cos145^(@)+sin 55^(@) cos245^(@) = 0

Prove that, (cos30^(@) - sin 20^(@))/(cos 40^(@) + cos20^(@)) = 4/sqrt3 cos40^(@) cos 80^(@)

Prove that (cos20^(@)-sin20^(@))/(cos20^(@)+sin20^(@))=tan 25^(@)

Prove that :(cos20^(@)-sin20^(@))/(cos20^(@)+sin20^(@))=tan25^(@)

(2cos40^(@)-cos20^(@))/(sin20^(@))

(2cos40^(@)-cos20^(@))/(sin20^(@))

Prove that : (i) sin42^(@)cos48^(@)+sin48^(@)cos42^(@)=1 (ii) cos70^(@)cos20^(@)-sin70^(@)sin20^(@)=0

Prove that : (i) sin42^(@)cos48^(@)+sin48^(@)cos42^(@)=1 (ii) cos70^(@)cos20^(@)-sin70^(@)sin20^(@)=0

Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0