Home
Class 11
MATHS
[" Q.81The integral "int(pi/6)^( pi/4)(d...

[" Q.81The integral "int_(pi/6)^( pi/4)(dx)/(sin2x(tan^(5)x+cot^(5)x))" equals: "],[[" (A) "(1)/(20)tan^(-1)((1)/(9sqrt(3)))," [JE Main "2019]],[" (C) "(pi)/(40)," (B) "(1)/(10)((pi)/(4)-tan^(-1)((1)/(9sqrt(3))))],[" (D) "(1)/(50)((pi)/(4)-tan^(-1)((1)/(3sqrt(3))))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi//6)^(pi//3) (dx)/(1 + sqrt(tan x)) =

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3))then x is

int_(pi//6)^(pi//3)(1)/(1+tan x) dx=

int_(0)^((3pi)/(4))(sinxdx)/(1+cos^(2)x)=(pi)/(4)+tan^(-1)((1)/(sqrt(2)))

If tan^(-1)x=(pi)/(4)-tan^(-1)((1)/(3)) , then x is

The value of int_((pi)/(6))^((pi)/(3)) (dx)/(1+sqrt(tan x)) is equal to -

int_((pi)/(6))^((pi)/(4))(tan x+cot xdx)/(tan^(-1)x+cot^(-1)x)

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)