Home
Class 12
MATHS
If x=a cot theta and y=(1)/(x^(2)+a^(...

If `x=a cot theta and y=(1)/(x^(2)+a^(2))`, then the value of `(d^(2)y)/(dx^(2))` at `theta=(pi)/(6)` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a cos^(3)theta and y=a sin^(3)theta, then find the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(6)

If x=2 cos theta-cos 2 theta and y=2 sin theta-sin 2 theta , then the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(2) is -

If x sec theta , y = tan theta , then the value of (d^(2) y)/(dx^(2)) " at " theta = (pi)/(4) is

Find (d^(2)y)/(dx^(2)) in the following If x=acos^(3)thetaandy=asin^(3)theta , then find the value of (d^(2)y)/(dx^(2))" at "theta=pi/6 .

If x=sintheta,y=sin^(3)theta then (d^(2)y)/(dx^(2)) at theta=(pi)/(2) is . . .

If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(dx^2) at theta=pi/6dot

If x=acos^3theta and y=asin^3theta, then find the value of (d^2y)/(dx^2) at theta=pi/6dot

If x=a(cos theta+log(tan((theta)/(2))) and y=a sin theta then find the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(4)