Home
Class 12
MATHS
The derivative of (log)(10)x w.r.t. x^2 ...

The derivative of `(log)_(10)x` w.r.t. `x^2` is equal to `1/(2x^2)log_e 10` (b) `2/(x^2)(log)_(10)e` `1/(2x^2)(log)_(10)e` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of (x^(2)+1)log x-e^(x)cos x w.r.t x is

The derivative of log _(10) [Sin ^(-1) (x ^(2)) ] w.r.t x is

(log_(e)2)(log_(x)625)=(log_(10)16)(log_(e)10)

If (1)/(log_(x)10)=(2)/(log_(a)10)-2, then x=

int_(1//2)^(2)|log_(10)x|dx= a) log_(10)(8//e) b) 1/2log_(10)(8//e) c) log_(10)(2//e) d)None of these

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

((log_(10)x)/(2))^(log_(10)^(2)x+log_(10)x^(2)-2)=log_(10)sqrt(x)

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

log_(10)x-(1)/(2)log_(10)(x-(1)/(2))=log_(10)(x+(1)/(2))-(1)/(2)log_(10)(x+(1)/(8))

Solve: |x-1|^((log)_(10)x)^2-(log)_(10)x^2=|x-1|^3