Home
Class 12
MATHS
If ye ^(x) +xe^(y) =1 ,then (dy)/(dx) =...

If ` ye ^(x) +xe^(y) =1 ,then (dy)/(dx) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1 +xe^(y) ,then (dy)/(dx) =

If y=1 +xe^(y) ,then (dy)/(dx) =

If y=xe^(xy) , then (dy)/(dx) =

If y =1+xe ^(y) then (dy)/(dx) =

If y=xe^(xy) , then dy/dx=

If xe^(xy) + ye^(-xy) = sin ^(2) x , then (dy)/(dx) at x =0 is a) 2y^(2) -1 b) 2y c) y^(2) -y d) y^(2) -1

If (xe)^(y)=e^(x) , then (dy)/(dx) is

If y = e^(cot x )tan (xe^(x) ) ,then ( dy)/(dx)=

If xe^(xy)=y+sin^(2)x , then (dy)/(dx) at x = 0 is :