Home
Class 12
MATHS
d/(dx) [tan^(-1)(sqrt(x))]=...

`d/(dx) [tan^(-1)(sqrt(x))]`=

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)(1+xsqrt(2))]+(d)/(dx)[tan^(-1)\(1-xsqrt(2))]=

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=

(d)/(dx) {Tan ^(-1) (sqrt(1+ x ^(2))-1)/( x)}=

(d)/(dx) {Tan ^(-1) ""(sqrt(1-x))/(1+ x) }=

(d)/(dx) [tan^(-1) ((a-x)/(1+ ax))] is

(d)/(dx)[(tan sqrt(5x))] =

d/dx(tan^-1(x/sqrt(a^2-x^2))=

(d)/(dx ) { Tan ^(-1) ( sqrt(|(a -b)/(a +b)|)tan ""(x)/(2))}=

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=