Home
Class 11
MATHS
If f(x) = 2cosec2x + secx + cosecx then ...

If `f(x) = 2cosec2x + secx + cosecx` then in `(0,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is

Investigate the behaviour of the following functions for monotonicity in the given intervals. (i) f(x) = -sin^(3)x + 3sin ^(2)x +5, x epsilon [-pi/2, pi/2] . (ii) f(x) = secx - cosec x, x epsilon (0, pi/2) .

The minimum value of 27 secx + 64 cosecx for x in (0,pi/2) is ……. And is obtained at …….

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is

Minimum value of f(x)=cos^(2)x+(secx)/(4) , x in (-(pi)/(2),(pi)/(2)) is