Home
Class 12
MATHS
[" The value of "(i)^(i)" is "],[qquad o...

[" The value of "(i)^(i)" is "],[qquad omega],[qquad -omega^(2)],[" none "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (i)^i is omega -omega^(2) pi/3 none

What is the value of |{:(" "1-i," "omega^(2)," "-omega),(" "omega^(2)+i," "omega," "-i),(1-2i-omega^(2),omega^(2)-omega,i-omega):}| , where omega is the cube root of unity ?

Find the value of |{:(" "1+i," "i omega," "i omega^(2)),(" "i omega," "i omega^(2)+1," "i omega^(3)),(i omega^(2), i omega^(3), " "i omega^(4)+1):}| , where omega is a non real cube root of unity and i = sqrt(-1) .

Find the value of (i)omega^(21)(i i)omega^(18)

If omega=-(1)/(2)+i (sqrt(3))/(2) , the value of [[1, omega, omega^(2) ],[ omega, omega^(2), 1],[ omega^(2),1, omega]] is

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1-omega^2,-omega^2],[1, omega^2,omega^4]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)

Solve the following: Find the value of ((1 + i)^(2n) - (1 - i)^(2n)) / ((1 + omega^4 - omega^2) (1 - omega^4 + omega^2))

Find the value of ( i ) (omega)^12 ( ii ) ( omega )^81

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1,-omega^2],[omega^2, omega^2,omega]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)