Home
Class 10
MATHS
‘O’ is any point inside a rectangle ABCD...

‘O’ is any point inside a rectangle ABCD. Prove that ` OB^(2) + OD^(2) = OA^(2) + OC^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`OC^(2) + OA^(2)`
Promotional Banner

Topper's Solved these Questions

  • SIMILAR TRIANGLES

    NCERT KANNAD|Exercise DO THIS (FILL IN THE BLANKS)|6 Videos
  • SIMILAR TRIANGLES

    NCERT KANNAD|Exercise DO THIS TRUE /FALSE|5 Videos
  • SETS

    NCERT KANNAD|Exercise Try This|11 Videos
  • TANGENTS AND SECANTS TO A CIRCLE

    NCERT KANNAD|Exercise Try this|3 Videos

Similar Questions

Explore conceptually related problems

ABCD is a rhombus. Prove that AC^(2) + BD^(2) = 4 AB^(2)

In the figure given below, O is point in the interior of a triangle ABC, OD _|_ BC , OE _|_ AC and OF _|_ AB . Show that (i) OA^(2) + OB^(2) + OC^(2) + OD^(2) - OE^(2) - OF^(2) = AR^(2) + BD^(2) + CE^(2) (ii) AF^(2) + BD^(2) + CE^(2) = AE^(2) + CD^(2) + BF^(2)

For any acute angle theta , prove that: (i) sin^(2) theta + cos^(2) theta =1

For any acute angle theta , prove that: (ii) 1+cot^(2) theta = cosec^(2) theta

If E,F, G and H are respectively the mid-points of the sides of a parallelogram ABCD, show that ar (EFGH) = (1)/(2) ar (ABCD)

In Fig. 2.54, o is a point in the interior of a triangle ABC,ODbotBC,OEbotACandofbotAB. Show that OA^(2)+OB^(2)+OC^(2)-OD^(2)-OE^(2)-OF^(2)=AF^(2)+BD^(2)+CE^(2),

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

AOB is the positive quadrant of the ellipse (X^(2))/(a^(2)) + (y^(2))/(b^(2)) =1 , where OA =a, OB =b. The area between the arc AB and the chord AB of the ellipsed is