Home
Class 11
MATHS
Let A= {1, 2, 3, 4, 6}. Let R be the rel...

Let A= {1, 2, 3, 4, 6}. Let R be the relation on A defined by `{(a,b) a, b in A,b` is exactly divisible by a}
(i) Write R in roster form
(ii) Find the domain of R
(iii) Find the range of R.

Text Solution

Verified by Experts

The correct Answer is:
(i) R={(1,1),(1,2),(1,3),(1,4),(1,6),(2,4),(2,6),(2,2),(4,4),(6,6),(3,3),(3,6)}
(ii) Domain of R={1,2,3,4,6}
(iii) Range of R={1,2,3,4,6}
Promotional Banner

Similar Questions

Explore conceptually related problems

Let R be the relation on Z defined by R= {(a,b): a, b in Z, a-b is an integer}. Find the domain and range of R.

Let A = { 2, 3, 4} and R be relation on A defined by R={(x,y)(x,yinA,x divides y } , find 'R'.

Let A= {1,2,3}. Then the relation R= {(2,3)} in A is :

Let R be the equivalence relation on z defined by R = {(a,b):2 "divides" a - b} . Write the equivalence class [0].

Let R be a relation defined by R = {(a, b) : a ge b }, where a and b are real numbers, then R is

If A={1,2,3,4},B={5,6}.Define a relation R from A to B by R={(x,y):x in A,y in B,x-y is odd} .Write R in the roaster form.Write down its domain and range.

Show that the relation R in R defined R = {(a, b) : a le b} is reflexive and transitive but not symmetric.

Let R be the relation in the set N given by R={(a,b), a=b -2, b gt 6}. Choose the correct answer.

Let R be the relation over the set N xx N and is defined by (a,b)R(c,d) implies a+d=b+c . Then R is :