Home
Class 11
MATHS
If a, b, c, d and p are different real n...

If a, b, c, d and p are different real numbers such that `(a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0` , then show that a, b, c and d are in GP.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d and p are distinct non -zero real numbers such that : ( a^(2) + b^(2) +c^(2))p^(2) - 2 ( ab + bc + cd) p + ( b^(2) + c^(2) + d^(2)) le 0 , then a,b,c,d :

If a, b and c real numbers such that a^(2) + b^(2) + c^(2) = 1, then ab + bc + ca lies in the interval :

If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0) then show that a, b, c and d are in G.P.

If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) , than a,b,c are in

If a,b,c,d are in H.P., then :

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2) = (ab+bc+cd)^2

If a, b, c are distinct positive real numbers and a^(2)+b^(2)+c^(2)=1 , then ab+bc+ca is :

If a,b,c,d are positive real numbers such that a+b+c +d = 12 , then M = ( a+ b ) ( c + d ) satisfies the relation :

If a, b, c, d are in G.P, prove that (a^n + b^n), (b^n + c^n), (c^n + d^n) are in G.P.