Home
Class 10
MATHS
" iv."quad (x-3)(2x+1)=x(x+5)quad " Exam...

" iv."quad (x-3)(2x+1)=x(x+5)quad " Exam "

Promotional Banner

Similar Questions

Explore conceptually related problems

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-4x^2 – x + 1 = (x – 2)^3

Check whether the following are quadratic equation (i) (x+1)^2=2(x-3) (ii) x^2-2x=(-2)(3-x) (iii) (x-2)(x+1)=(x-1)(x+3) (iv) (x-3)(2x+1)=x(x+5) (v) (2x-1)(x-3)=(x+5)(x-1) (vi) x^2+3x+1=(x-2)^2 (vii) (x+2)^3=2x(x^2-1) (viii) x^3-– 4x^2 – x + 1 = (x – 2)^3

Check whether the following are quadratic equations:(iv)(x-3)(2x+1)=x(x+5)

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Which of the following are quadratic equations in x? (i)" "x^(2)-x+3=0" "(ii)" "2x^(2)+(5)/(2)x-sqrt(3)=0 (iii)" "sqrt(2)x^(2)+7x+5sqrt(2)=0" "(iv)" "(1)/(3)x^(2)+(1)/(5)x-2=0 (v)" "x^(2)-3x-sqrt(x)+4=0" "(vi)x-(6)/(x)=3 (vii)" "x+(2)/(x)=x^(2)" "(viii)" "x^(2)-(1)/(x^(2))=5 (ix)" "(x+2)^(3)=x^(3)-8" "(x)" "(2x+3)(3x+2)=6(x-1)(x-2) (xi) " "(x+(1)/(x))^(2)=2(x+(1)/(x))+3

Solve for x (1)/( 2x -3) + (1)/(x -5) =1," " x ne 3/2,5

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

Expand using binomial theorem: (i) (1-2x)^(4) " " (ii) (x+2y)^(5) (iii) (x-(1)/(x))^(6) " "(iv) ((2x)/(3)=(3)/(2x))^(5) (v) (x^(2) +(2)/(x))^(6)" "(vi) (1+(1)/(x^(2)))^(4)

Find which of the following equations are quadratic : (i) (3x-1)^(2)=5(x+8) (ii) 5x^(2)-8x=-3(7-2x) (iii) (x-4)(3x+1)=(3x-1)(x+2) (iv) x^(2)+5x-5=(x-3)^(2) (v) 7x^(3)-2x^(2)+10=(2x-5)^(2) (vi) (x-1)^(2)+(x+2)^(2)+3(x+1)=0

Given that (5x - 3)^3 + (2x + 5)^3 + 27(4- 3x)^3 = 9(3 - 5x)(2x + 5)(3x - 4) , then the value of (2x + 1) is: