Home
Class 11
MATHS
If (a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c...

If `(a+bx)/(a-bx)=(b-cx)/(b-cx)=(c+dx)/(c-dx)( x ne 0)` then show that a, b, c and d are in G.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

( a+bx) /( a-bx) = ( b+cx)/( b-cx) = ( c +dx)/( c-dx), ( x cancel(=)0) then a,b,c,d are in :

If a, b, c, d and p are different real numbers such that (a^2 + b^2 + c^2)p^2 – 2(ab + bc + cd) p + (b^2 + c^2 + d^2) le 0 , then show that a, b, c and d are in GP.

Show that (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a) =0

Let f(x) = (ax+b)/(cx + d), then f(x) has

int ((ax^(3)+bx^(2)+c)/(x^(4) dx =

Let f(x) = (ax+b)/(cx+d) . Then fof(x) = x , then

d/dx (ax+b)^(cx+d) =

a^(x) = b^(y) = c^(z) = d^(t) and a,b,c,d are in G.P. , then x,y,z,t are in :

If a, b, c, d are in G.P, prove that (a^n + b^n), (b^n + c^n), (c^n + d^n) are in G.P.