Home
Class 11
MATHS
Find lim(xrarr5)f(x), where f(x)=|x|-5...

Find `lim_(xrarr5)f(x)`, where `f(x)=|x|-5`

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(xrarr0)f(x) , where f(x)={{:((x)/(|x|)",", x ne0),(0",",x=0):}

Find lim_(xrarr1)f(x) , where f(x)={{:(x^(2)-1",",xle1),(-x^(2)-1",",xgt1):}

Find lim_(xrarr0)f(x) and lim_(xrarr1)f(x) , where f(x)={{:(2x+3",",xle0),(3(x+1)",",xgt0):}

Evaluate lim_(xrarr0)f(x)," where "f(x)={{:((|x|)/(x)",",x ne0),(0",",x=0):}

If f(x) is an odd function and lim_(x rarr 0) f(x) exists, then lim_(x rarr 0) f(x) is

Suppose f(x)={{:(a+bx",",xlt1),(4",",x-1),(b-ax",",xgt1):} and if lim_(xrarr1)f(x)=f(1) what are possible values of a and b?

It is given that f^(')(a) exists, then lim_(x rarr a) (x f(a) - a f(x))/(x-a) is equal to

If f(2) = 2 and f^(')(2) = 1 , then lim_(x rarr 2) (2x^(2)-4 f(x))/(x-2) =