Home
Class 11
MATHS
For the function f(x)=(x^(100))/(100)+...

For the function
`f(x)=(x^(100))/(100)+(x^(99))/(99)+….+(x^(2))/(2)+x+1.`
Prove that
`f'(1)=100f'(0)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x) defined as f(x) = (x^(100))/(100) + (x^(99))/(99) +….+(x^(2))/(2) + x + 1 , then f'(0) =

If the function f(x) defined by f(x)=(x^(100))/(100)+(x^(99))/(99)+.....+(x^(2))/(2)+x+1 , then f'(0)=

If f(x)=(x^(100))/(100)+(x^(99))/(99)+(x^(98))/(98) +------+ x^(2)/2+x+1 then prove that f^(1) (1)=100. f^(1)(0)

If f(x) = (x ^(100))/( 100) +( x^(99))/( 99) +( x^(98))/( 98) +---+ (x^(2))/( 2) + x+1 then prove that f^(1) =100 f^(1) (0 )

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)), x ne 0, then f(x)=

If f(x) = x^(100) + x^(99) + ….+x + 1 , then f^(')(1) is equal to

Find the derivative of the function f(x)=2x^(2)+3x-5" at "x=-1 . Also prove that f'(0)+3f'(-1)=0 .

If f(x) = int (x^(2)+sin^(2)x)/(1+x^(2)) sec^(2)x dx and f(0) = 0, then f(1) =

If the function f(x)= x^(3)+e^(x/2) and g(x) = f^(-1)(x) then the value of g^(')(1) is

The function f(x)=(x-a)"sin"(1)/(x-a) for x!=a and f(a)=0 is :