Home
Class 11
MATHS
Find the derivative of x^(n)+ax^(n-1)+a^...

Find the derivative of `x^(n)+ax^(n-1)+a^(2)x^(n-2)+…+a^(n-1)x+a^(n)` for some fixed real number a.

Text Solution

Verified by Experts

The correct Answer is:
`nx^(n-1)+a(n-1)x^(n-2)+a^(2)(n-2)x^(n-3)+…+a^(n-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficients of x^(-n) in (1+x)^(n)(1+(1)/(x))^(n) is

If the equation a_(n) x^(n) + a_(n -1) x^(n-1) + .... + a_(1) x = 0, a_(1) ne 0, n ge 2 , has a positive root x = alpha , then the equation n a_(n) x^(n-1) + (n - 1) a_(n-1) x^(n-1) + ..... , a_(1) = 0 has a positive root, which is :

The coefficients of x^(n) in the expansion of (1+x)^(2n) and (1+x)^(2n-1) are in the ratio

lim_(n rarr oo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1) ) =

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

The coefficient of x^(n) in the expansion of (1+x)(1-x)^(n) is

If f(x)=(x^(n)-a^(n))/(x-a) for some constant 'a', then f'(a) is :

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =