Home
Class 11
MATHS
If f(x)=(x^(n)-a^(n))/(x-a) for some con...

If `f(x)=(x^(n)-a^(n))/(x-a)` for some constant 'a', then `f'(a)` is :

Text Solution

Verified by Experts

The correct Answer is:
`(nx^(n)-anx^(n-1)-x^(n)+a^(n))/((x-a)^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[x] , then f(x) is :

If f(x) = log (tan x), then f^(')(x) =

If the three function f(x),g(x) and h(x) are such that h(x)=f(x)g(x) and f'(a)g'(x)=c , where c is a constant, then : (f''(x))/(f(x))+(g''(x))/(g(x))+(2c)/(f(x)f(x)) is equal to :

If f(x)=(a-x^(n))^(1 / n) , then f(f(x)) =

A real valued functio f(x) satisfies the functional equation f(x-y)=f(y)-f(a-x)f(a+y) where a is given constant and f(0) =1 f(2a-x) is equal to

A real valued function f(x) satisfies the functional equation : f(x-y)=f(x)f(y)-f(a-x)f(a+y) , where a is given constant and f(0)=1.f(2a-x) is equal to :

if int xe^(2x) dx = e^(2x).f(x)+c , where c is the constant of integration, then f(x) is

Let f be function satisfying f(x+y)=f(x)+f(y) and f(x)=x^(2)g(x) , for all x and y, where g(x) is a continuous function. Then f'(x) is :