Home
Class 12
MATHS
Prove the following: sin^(-1)(2xsqrt(1...

Prove the following:
`sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
(i) `2sin^(-1)x` (ii) `2cos^(-1)x`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Show that sin^(-1)(2xsqrt(1-x^(2))) = 2sin^(-1)x ,

Prove the following: sin^(-1)(3x-4x^(3))=3sin^(-1)x, x epsilon[-1/2,1/2]

y = sin^(-1)(2xsqrt(1 - x^2)), -1/(sqrt2) lt x lt 1/(sqrt2)

Prove the following: 2tan^(-1)x=sin^(-1)((2x)/(1+x^(2))),+x+le1

sin (2 sin^(-1) sqrt((63)/(65)))=