Home
Class 12
MATHS
Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x...

Prove that `tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)[(3x=x^(3))/(1-3x^(2))],|x|lt1/(sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
L.H.S
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)[(3a^(2)x-x^(3))/(a^(3)-3ax^(2))]

int (e^(3 tan^(-1)x)/(1+x^(2))) dx

Solve : tan^(-1)2x+tan^(-1)3x= (pi)/(4)

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove that : tan 3x=(3tanx-tan^(3)x)/(1-3tan^(2)x)

Prove the following: 2tan^(-1)x=tan^(-1)((2x)/(1-x^(2))),-1ltxlt1

d/dx tan^(-1) [(x-x^(1/2))/(1+x^(3/2))] =

Solve tan^(-1)2x+tan^(-1)3x=(pi)/4