Home
Class 12
MATHS
sin((pi)/3-"sin"^(-1)(-1/2)) is equal to...

`sin((pi)/3-"sin"^(-1)(-1/2))` is equal to

A

`1/2`

B

`1/3`

C

`1/4`

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value sin^(-1) ((2sqrt(2))/3) +sin^(-1)(1/3) is equal to

Simplify the following: sin{(pi)/3-sin^(-1)(-1/2)}

The value of sin^(-1) ((2 sqrt2)/(3)) + sin^(-1) ((1)/(3)) is equal to

Evaluate the following (i) sin ( pi/2 - sin^(-1) ( (-1)/2)) (ii) sin(pi/2 - sin^(-1)(- sqrt3/2))

If sin^(-1)x+sin^(-1)y=(pi)/(2) , then x^(2) is equal to

If A = 1/pi [(sin^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),cot^(-1)(pix))] B = 1/pi [(-cos^(-1)(xpi),tan^(-1)(x/pi)),(sin^(-1)(x/pi),-tan^(-1)(pix))] then A-B is equal to :

The value of sin (2 tan ^(-1)(.75)) is equal to

lim_(x rarr (pi)/(2)) (1-sin x)/(cos x) is equal to :