Home
Class 12
MATHS
Prove That : tan^(-1)sqrt(x)=1/2"cos"...

Prove That :
`tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: 2tan^(-1)x=cos^(-1)((1-x^(2))/(1+x^(2))),xge0

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

"tan"^(-1)1/(sqrt(x^(2)-1))|x|gt1

Prove the following: 2tan^(-1)x=sin^(-1)((2x)/(1+x^(2))),+x+le1

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1

Prove the following: cos^(-1)(4x^(3)-3x)=3cos^(-1)x,x epsilon [1/2,1]

Prove the following: sin^(-1)(3x-4x^(3))=3sin^(-1)x, x epsilon[-1/2,1/2]

Integrate the functions tan^(-1)sqrt((1-x)/(1+x))