Home
Class 12
MATHS
Prove That : tan^(-1)((sqrt(1+x)-sqrt...

Prove That :
`tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))) then dy/dx =

Lt_(n to 0)x/(sqrt(1 + x)-sqrt(1-x)) =

Prove That : tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]

int (1+x+sqrt(x+x^(2)))/(sqrtx + sqrt(1+x)) dx =

If y = tan^(-1) ((sqrt(1+x^(2)) -sqrt(1-x^(2)))/(sqrt(1+x^(2)) + sqrt(1-x^(2)))) then dy/dx =

Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

"tan"^(-1)1/(sqrt(x^(2)-1))|x|gt1