Home
Class 12
MATHS
Simplify costheta[(costheta,sin theta),(...

Simplify `costheta[(costheta,sin theta),(-sintheta,costheta)]+sintheta[(sintheta,-costheta),(costheta,sintheta)]`

Text Solution

Verified by Experts

The correct Answer is:
`[(1,0),(0,1)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : cos theta[(cos theta,sin theta),(-sin theta,cos theta)]=sin theta[(sin theta,-cos theta),(cos theta,sin theta)]

(sintheta)/(1+costheta) is:

If A=[{:(costheta, sintheta),(-sintheta, costheta):}] , then A.A' is

(sintheta+costheta)(tantheta+cottheta)=

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=I is true for

Let f(theta)=sintheta(sintheta+sin3theta),"then"f(theta) :

(cos2theta+isin2theta)^(-5)(cos3theta-isin3theta)^(6)(sintheta-icostheta)^(3) is

If A = {:[(cos^3theta,sintheta),(-sin^3theta,cos^3theta)]:} then A^3 =

Simplify: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) + sin theta cos theta

Prove that: (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2cosectheta