Home
Class 12
MATHS
Without expanding prove that Delta ={:...

Without expanding prove that ` Delta ={:|( x+y,y+z,z+x) ,( z,x,y),( 1,1,1) |:} =0`

Text Solution

Verified by Experts

The correct Answer is:
`Delta =0 `
Promotional Banner

Similar Questions

Explore conceptually related problems

Using Cofactors of elements of third column , evaluate , Delta ={:|( 1,x,yz),(1,y,zx),( 1,z,xy) |:}

Using the property of determinants and without expanding {:|( x,a,x+a),( y,b,y+b),(z,c,z+c)|:} =0

The value of |(x+y,y+z,z+x),(x,y,z),(x-y,y-z,z-x)|=

|(x, 4, y+z),(y, 4, z+x),(z, 4, x+y)|=

If x,y,z are different and Delta = |(x, x^2, 1+x^3),(y,y^2,1+y^3),(z,z^2,1+z^3)|= 0 then show that 1 + xyz = 0

Prove that |{:(,x+y+2z,x,y),(,z,y+z+2z,y),(,z,x,z+x+2y):}|=2(x+y+z)^(3) .

If x, y, z are all different and not equal to zero and |{:(1+x,,1,,1),(1,,1+y,,1),(1,,1,,1+z):}| = 0 then the value of x^(-1) + y^(-1) + z^(-1) is equal to

Using Properties of determinants, prove that: {:|(x^2+1,xy,yz),(xy,y^2+1,yz),(xz,yz,z^2+1)|=1+x^2+y^2+z^2

using properties of determinant prove that {:[( x,x^(2) , 1+ px^(3) ),( y,y^(2) , 1+ py^(2)),( z,z^(2) , 1+pz^(2)) ]:} =( 1+pxyz ) ( x-y) ( y-z ) (z-x) , where p is any scalar .

If x,y,z are different and Delta = {:[( x,x^(2) , 1+x^(3)),( y,y^(2) ,1+y^(3)),( z,z^(2) ,1+z^(3)) ]:} find |Delta| .