Home
Class 12
MATHS
Evaluate Delta = {:|(1,a,bc),( 1,b,ca),...

Evaluate ` Delta = {:|(1,a,bc),( 1,b,ca),(1,c,ab)|:}`

Text Solution

Verified by Experts

The correct Answer is:
`= ( a-b)(b-c) (c-a) `
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that {:[(1,ab,a+b),(1,bc,b+c),(1,ca,c+a):}]=(a-b)(b-c)(c-a)

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

If Delta_1=|(1,1,1),(a,b,c),(a^2,b^2,c^2)|, Delta_2=|(1,bc,a),(1,ca,b),(1,ab,c)| , then

|(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|= 0

The value of |(1,1,1),(bc,ca,ab),(b+c,c+a,a+b)|

Using the Properties of determinants, prove the following: {:|(1,1,1),(a,b,c),(bc,ca,ab)|=(a-b)(b-c)(c-a)

Using properties of determinants prove that : |(1+a,1,1),( 1,1+b,1),(1,1,1+c)| =abc +bc +ca +ab

Show that {:|( 1+a,1,1),( 1,1+b,1) ,( 1,1,1+c) |:}= abc ( 1+(1)/(a) +(1)/(b) +(1)/(c) ) = abc +bc +ca +ab

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Prove that |(1,1,1),(bc,ca,ab),(b+c, c+a, a+b)| = (a-b)(b-c)(c-a)