Home
Class 12
MATHS
Prove that the determinant {:|( x, sin ...

Prove that the determinant ` {:|( x, sin theta ,cos theta ),( -sin theta , -x , 1),( cos theta , 1,x) |:}` is independent of θ.

Promotional Banner

Similar Questions

Explore conceptually related problems

(sin theta)/(1+cos theta)+(sin theta)/(1-cos theta)= _______

x = a cos theta, y = b sin theta .

If sin theta - cos theta = 3/5, sin theta cos theta = __________

Prove that (cot theta -cos theta )/( cot theta +cos theta ) =(cos ec theta -1)/( cosec theta +1)

If sin theta+cos theta=a then sin ^(4) theta+cos ^(4) theta=

If A=[[sin theta , cos theta],[-cos theta , -sin theta]] then A^(2)=

Prove that: (sin^(3) theta + cos^(3) theta)/(sin theta + cos theta) = 1-sin theta cos theta

Prove that: (1-sin theta + cos theta)^(2) = 2(1+ cos theta) (1-sin theta) .

If 3 cot theta = 5, ( 5 sin theta - 3 cos theta)/( 5 sin theta + 3 cos theta) = _______

(1-cos theta)/(sin theta)=(sin theta)/(1+cos theta)