Home
Class 12
MATHS
Using the property of determinants prove...

Using the property of determinants prove that `{:|( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) |:} = 3( a+b+c) ( ab+bc+ca) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding prove that {:|( 0,a,-b),(-a,0,-c),( b,c,0) |:}=0

Using the Properties of determinants, prove that following: {:|(-a^2,ab,ac),(ba,-b^2,bc),(ac,bc,-c^2)|=4a^2b^2c^2

Using the property of determinants and without expanding {:[( a-b,b-c, c-a),( b-c,c-a,a-b),( c-a,a-b,b-c)]:} =0

Using the property of determinants and without expanding prove that {:|( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) |:} =4a^(2) b^(2) c^(2)

Using properties of determinants prove that : |(1+a,1,1),( 1,1+b,1),(1,1,1+c)| =abc +bc +ca +ab

Using the property of determinants and without expanding {:|( x,a,x+a),( y,b,y+b),(z,c,z+c)|:} =0

Using the property of determinants and without expanding prove that {:|( 1,bc,a(a+c) ),(1,ca,b( c+a)) ,( 1,ab,c(a+b) )|:}=0

Using the Properties of determinants, prove the following: {:|(1,1,1),(a,b,c),(bc,ca,ab)|=(a-b)(b-c)(c-a)

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Prove that {:|( a,a+b,a+b+c) ,( 2a,3a+2b,4a+3b+2c),( 3a,6a+3b,10a+6b+3c)|:}=a^(3)