Home
Class 12
MATHS
If a,b,c are in A.P. then the determinan...

If a,b,c are in A.P. then the determinant
` {:|( x+2,x+3,x+2a),( x+3,x+4,x+2b),( x+4,x+5,x+2c)|:}` is

A

`0`

B

`1`

C

`x`

D

`2x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are A.P then the value of the determinant |(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)|

If a, b,c are in A.P., then the value of the determinant |(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c)| is :

Given a,b,c are in A.P. Then determinant : |(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c)| in its simplified form is :

If a, b and c are in A.P., then the value of |(x+2,x+3,x+a),(x+4,x+5,x+b),(x+6,x+7,x+c)| is

If a, b and c are in A.P., then the value of |(x+2, x+3, x+a),(x+4, x+5, x+b),(x+6, x+7, x+c)| is

Using Properties of determinants, prove that {:|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)|=x^3

|(x+4, 2x, 2x),(2x, x +4, 2x),(2x, 2x ,x+4)| = (5x + 4)(4 - x)^(2) .

If a, b,c , d are the roots of the equation : x^(4) + 2x^(3) + 3x^(2) + 4x + 5 = 0 , then 1 + a^(2) + b^(2) + c^(2) + d^(2) is equal to :

If a, b, c are different, then value of x satisfying the equation |{:( 0 , x^(2) - a , x^(3) - b) , (x^(2) + a , 0 , x^(2) + c), (x^(4) + b , x- c , 0):}|=0 is

If a,b,c gt 0 and x,y,z , in R then the determinant : |((a^x+a^(-x))^2,(a^(x)-a^(-x))^2,1),((b^y+a^(-y))^2,(b^(y)-b^(-y))^2,1),((c^z+c^(-z))^2,(c^(z)-c^(-z))^2,1)| is equal to :