Home
Class 12
MATHS
Find (d^(2)y)/(dx^(2)), if y= x^(3)+ tan...

Find `(d^(2)y)/(dx^(2))`, if `y= x^(3)+ tan x`.

Text Solution

Verified by Experts

The correct Answer is:
`= 6x+2 sec^(2)x tan x`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+ y = tan^(-1) y and (d^(2)y)/(dx^(2)) =f (y) (dy)/(dx) , then f(y) =

Find (dy)/(dx)," if "2x+3y=sin y

Find (dy)/(dx), if 2x+3y=sin y .

Find (dy)/(dx) , if x = at^(2), y = 2at .

Write the degree of the differential equation : y.(d^(2)y)/(dx^(2)) + ((dy)/(dx))^(3) = x((d^(3)y)/(dx^(3)))^(2) .

The degree of the differential equation (d^(2) y)/(dx^(2)) + 3 ((dy)/(dx))^(2) = x^(2) log ((d^(2) y)/(dx^(2))) is

Find (dy)/(dx) if y=x sin x - (x^(2) )/( 13+tan x)

If y=a^(x), (d^(2)y)/(dx^(2))=

If x+y=tan^(-1)y" and "(d^(2)y)/(dx^(2))=f(y)(dy)/(dx) , then f(y)=