Home
Class 12
MATHS
If f(x) = sin^(-1)[(2^(x+1))/(1+4^(x))] ...

If `f(x) = sin^(-1)[(2^(x+1))/(1+4^(x))]` then f' (0) =

Text Solution

Verified by Experts

The correct Answer is:
`=(2^(x+1)log 2)/(1+4^(x))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)[2^(x+1)/(1+4^(x))]," then "f^(1)(0)=

If f(x)=sin^(-1)((2x)/(1+x^(2))) , then f(sqrt3) is

If f(x) = (sin (e^(x-2) - 1))/(log (x - 1)) , then lim_(x rarr 2) f(x) is given by :

If f(x) = sin^(-1) sqrt(x-4) , find the range of x .

If f(x) = int (x^(2)+sin^(2)x)/(1+x^(2)) sec^(2)x dx and f(0) = 0, then f(1) =

If f(x) = (x-1)/(x+1) , then f[1/f(x)] =

If f(x) = 1+x^4 , then f(x).f((1)/(x))=

If f(x) = (x-4)/(2sqrt(x)) , then f^(')(1) is