Home
Class 12
MATHS
Find f'(x)" if "f(x)= (sin x)^(sin x) fo...

Find `f'(x)" if "f(x)= (sin x)^(sin x)` for all `0 lt x lt pi`.

Text Solution

Verified by Experts

The correct Answer is:
`=(1+ log( sin x))(sin x)^(sin x) cos x`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the simplest from of tan^(-1)((cos x -sin x)/(cos x+sin x)), 0 lt x lt pi/2

Find the local maxima and local minima. If any of the following function. Also, find the local maximum and the local minimum values, as the case may be as follows: (iv) f(x) = sin x - cos x, 0 lt x lt 2 pi

Find the Continuity of function f(x) . f(x) = {{:(|x|+3, if, x le -3),(-2x, if, -3 lt x lt 3),(6x+2,if,x ge 3):}

Let f(x) = {(-2sinx, x le -pi/2),(asinx +b, -pi/2 lt x lt pi/2),(cosx, x ge pi/2):} then values of a and b so that f(x) is continuous are

Evaluate LT_(x to 0)((sin ax)/(sin bx)).

y = sin^(-1)((1-x^2)/(1+x^2)), 0 lt x lt 1 .

The minimum vallue of f(x) = sin^(4)x + cos^(4)x, 0 le x le pi/2 is

Find the intervals in which the function f given by f(x) =sin x +cos x , 0lt=x lt=2pi is increasing or decreasing.

Number of solutions of the equation cos^(4) 2x+2 sin^(2) 2x =17 (cos x + sin x)^(8), 0 lt x lt 2 pi is