Home
Class 12
MATHS
y = sin^(-1)(2xsqrt(1 - x^2)), -1/(sqrt2...

`y = sin^(-1)(2xsqrt(1 - x^2)), -1/(sqrt2) lt x lt 1/(sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
`(2)/(sqrt(1-x^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

Prove the following: sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))

y = sin^(-1) x + sin^(-1)sqrt(1 - x^2), 0 lt x lt 1 find (dy)/(dx) .

If y = sin^(-1) (2xsqrt(1-x^(2))) + sec^(-1) (1/sqrt(1-x^(2))) then dy/dx =

If y = sin^(-1) (2x sqrt(1-x^(2))) , then dy/dx at x = 1/2 is