Home
Class 12
MATHS
If x^(y) = e^(x - y) prove that (dy)/(dx...

If `x^(y) = e^(x - y)` prove that `(dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2))`.

Text Solution

Verified by Experts

The correct Answer is:
`(y(x-1))/(x(y+1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y) = a^(x) , prove that (dy)/( dx) = ( x log _(e) a -y)/( x log_(e) x)

If x = e^(x/y) , prove that (dy)/(dx) = (x-y)/(x log x) .

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If x^(y) = a^(x) ,prove that dy/dx = xlog_(e)a - y/ xlog_(e)x .

If x^y = e^(x-y), dy/dx=

If x^(y) = e^(x-y) then (dy)/(dx) is equal to

If x^(y)=a^(x) , prove that dy/dx=(xlog_(e)a-y)/(xlog_(e)x) .

If x^(y) = e^(x-y), (dy)/(dx) =

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x