Home
Class 12
MATHS
x = cos theta - cos 2 theta, y = sin the...

`x = cos theta - cos 2 theta, y = sin theta - sin 2 theta`. then find `dy/dx`

Text Solution

Verified by Experts

The correct Answer is:
`(cos theta- 2 cos 2 theta)/(2 sin 2theta- sin theta)`
Promotional Banner

Similar Questions

Explore conceptually related problems

For the curve x =2 cos theta - cos 2 theta and y = 2 sin theta - sin 2 theta , find the equation of tangent at theta = (pi)/(4) .

x = a cos theta, y = b sin theta .

x = a (cos theta + theta sin theta), y = a (sin theta - theta cos theta) . then find dy/dx

If x = theta cos theta + sin theta, y = cos theta- theta sin theta , then dy/dx at theta = pi/2

If x = a(cos theta + theta sin theta), y = a (sintheta - theta cos theta), dy/dx =

If x = a(cos theta + theta sin theta), y = a (sin theta - theta cos theta), (dy)/(dx) =

If x = a (cos theta + theta sin theta), y = a(sin theta - theta cos theta) then (d^(2)y)/(dx^(2)) =

Show that (1)/( cos theta ) -cos theta =tan theta .sin theta