Home
Class 12
MATHS
x = (sin^3t)/(sqrt(cos 2t)), y = (cos^3 ...

`x = (sin^3t)/(sqrt(cos 2t)), y = (cos^3 t)/(sqrt(cos 2t))`.

Text Solution

Verified by Experts

The correct Answer is:
`-cot 3t`
Promotional Banner

Similar Questions

Explore conceptually related problems

x=sin t, y= cos 2t.

The value of dy/dx , when cos x = (1)/( sqrt(1 + t^(2))) and sin y = (t)/(sqrt(1 + t^(2))) is

If x = cos^(-1) (1/(sqrt(1+t^(2)))), y = sin^(-1) (t/(sqrt(1+t^(2)))) then dy/dx =

x = sin t, y = cos 2 t .

If x = sin^(-1) (3t-4t^(3)) and y = cos^(-1) sqrt(1-t^(2)) , and -1/2 le t le 1/2 , then dy/dx =

Solve l=int_(cos^(4)t)^(-sin^(4)t)(sqrt(f(z))dz)/(sqrt(f(cos 2 t -z))+sqrt(f(z)))

If sin x = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2)) , then (dy)/(dx) is equal to