Home
Class 12
MATHS
x = a (cos theta + theta sin theta), y =...

`x = a (cos theta + theta sin theta), y = a (sin theta - theta cos theta)`. then find `dy/dx`

Text Solution

Verified by Experts

The correct Answer is:
`tan theta`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = a(cos theta + theta sin theta), y = a (sintheta - theta cos theta), dy/dx =

If x = a (cos theta + theta sin theta), y = a(sin theta - theta cos theta) then (d^(2)y)/(dx^(2)) =

If x = a(cos theta + theta sin theta), y = a (sin theta - theta cos theta), (dy)/(dx) =

x = a cos theta, y = b sin theta .

x = cos theta - cos 2 theta, y = sin theta - sin 2 theta . then find dy/dx

The normal to the curve : x=a(cos theta+theta sin theta), y = a (sin theta-theta cos theta) at any point 'theta' is such that:

The normal to the curve : x=a(cos theta+theta sin theta), y = a (sin theta-theta cos theta) at any point 'theta' is such that:

The slope of the normal to the curve : x=a(cos theta+theta sin theta), y =a(sin theta-theta sin theta) at any point 'theta' is :

If a cos theta-b sin theta=c then a sin theta+b cos theta=

If x = theta cos theta + sin theta, y = cos theta- theta sin theta , then dy/dx at theta = pi/2