Home
Class 12
MATHS
If x=sqrt(a^(sin^(-1)t)) then prove that...

If `x=sqrt(a^(sin^(-1)t))` then prove that `(dy)/(dx)=(-y)/(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

x = sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Prove that: (dy)/(dx) = -y/x

If x=sqrt(a^(sin^(-1)t)),y=sqrt(a^(cos^(-1)t)) , then show that dy/dx=-y/x

If x=sint, y=cos 2t then prove that (dy)/(dx) =-sin t

If sqrt(x) + sqrt(y) = sqrt(5) , Prove that (dy)/(dx) = (-3)/(2) when x= 4" and "y=9 .

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

If sqrt(x) + sqrt(y) = sqrt(a) , prove that (dy)/(dx) = -sqrt(y/x) .

If xsqrt(1 + y) + ysqrt(1 + x) = 0 x != y prove that (dy)/(dx) = (-1)/((1 + x)^(2))