Home
Class 12
MATHS
If y = (tan^(-1)x)^(2) then show that (x...

If `y = (tan^(-1)x)^(2)` then show that `(x^(2) + 1)^(2) (d^2 y)/(dx^2) + 2x(x^2 + 1)(dy)/(dx) = 2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= ( sin^(-1) x)^(2) , show that (1-x^(2) ) (d^2 y)/( dx^2) - x (dy)/(dx) =2

If y=(tan^(-1)x)^(2) , show that (x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2 .

If y=(tan^(-1)x)^(2) show that (x^(2)+1)^(2)y_(2)+2x(x^(2)+1)y_(1)=2

If y = e^(a cos^(-1)x), -1 le x le 1 show that (1 - x)^(2) (d^2 y)/(dx^2) - x (dy)/(dx) - a^(2)y = 0 .

If y= tan^(-1) sqrt(x^(2)-1) then the ratio (d^(2)y)/(dx^(2)) : (dy)/(dx)=

If y=tan^(-1)sqrt(x^(2)-1) , then the ratio (d^(2)y)/(dx^(2)):(dy)/(dx)=

If y=tan^(-1)sqrt(x^(2)-1) , then the ratio (d^(2)y)/(dx^(2)):(dy)/(dx)=

If y=(sin^(-1)x) . Show that (1-x^(2)) (d^(2)y)/(dx^(2))-x((dy)/(dx))=0