Home
Class 12
MATHS
If y = e^(a cos^(-1)x), -1 le x le 1 sho...

If `y = e^(a cos^(-1)x), -1 le x le 1` show that `(1 - x)^(2) (d^2 y)/(dx^2) - x (dy)/(dx) - a^(2)y = 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

y= sin ^(-1)x show that (1-x^2) (d^2 y)/(dx^2) -x (dy)/(dx) =0

If y = cos^(-1) x , show that (1 - x^2) (d^2y)/(dx^2) - x(dy)/(dx) = 0 .

If y=e^(a cos^(-1)x),-2lexle1 , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx-a^(2)y=0

If y= ( sin^(-1) x)^(2) , show that (1-x^(2) ) (d^2 y)/( dx^2) - x (dy)/(dx) =2

If y = (tan^(-1)x)^(2) then show that (x^(2) + 1)^(2) (d^2 y)/(dx^2) + 2x(x^2 + 1)(dy)/(dx) = 2

If y=(sin^(-1)x) . Show that (1-x^(2)) (d^(2)y)/(dx^(2))-x((dy)/(dx))=0

If e^(y)(x + 1) = 1 show that (d^2 y)/(dx^2) = ((dy)/(dx))^(2) .