Home
Class 12
MATHS
Find (i) inte^(x)(tan^(-1)x+1/(1+x^(2)))...

Find (i) `inte^(x)(tan^(-1)x+1/(1+x^(2)))dx` (ii) `int((x^(2)+1)e^(x))/((x+1)^(2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find int((x^(2)+1)e^(x))/((x+1)^(2))dx.

int (e^(3 tan^(-1)x)/(1+x^(2))) dx

int e^(mtan^(-1)x)/(1+x^(2)) dx =

int((x-1)e^(x))/((x+1)^(3)) dx=

int (e^(tan^(-1)x))/(1+x^2) dx .

inte^(tan^(-1)x)(1+x/(1+x^(2)))dx is equal to

Evaluate : int(e^(tan^(-1)x))/(1+x^(2))dx.

int e^(x) (1+tan x + tan^(2) x) dx

inte^(x)((1-x)/(1+x^(2)))^(2)dx equal to

Evaluate: inte^(x)((x-1)/x^(2)) dx