Home
Class 12
MATHS
underset(x to 0)lim ((e^(1//x) -1)/(e^(1...

`underset(x to 0)lim ((e^(1//x) -1)/(e^(1//x) + 1))`=

Text Solution

Verified by Experts

The correct Answer is:
`log(e^(x)+e^(-x))+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that underset(xto0)lim(e^(1//x)-1)/(e^(1//x)+1) does not exist.

underset(x to 0)lim ((1+x)^(1//x) - e)/(x) equals

The value of underset(x rarr 0)(lim) ((e^(x)-1)/(x)) is

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

int(e^(2x) -1)/(e^(2x) + 1) dx

int (e^(x)-1)/(e^(x)+1) dx =

underset(x rarr0)(lim) (log_(e) (1+x))/(3^(x)-1)=

f(x) = ((e^(2x)-1)/(e^(2x)+1)) is