Home
Class 12
MATHS
y = sin^(-1)((2x)/(1 + x^2))...

`y = sin^(-1)((2x)/(1 + x^2))`

Text Solution

Verified by Experts

The correct Answer is:
`2xtan^(-1)x-log(1+x^(2))+C`
Promotional Banner

Similar Questions

Explore conceptually related problems

y = sin^(-1)((1-x^2)/(1+x^2)), 0 lt x lt 1 .

y = sin^(-1)(2xsqrt(1 - x^2)), -1/(sqrt2) lt x lt 1/(sqrt2)

The derivative of sin^(-1) ((2x)/(1+x^(2))) w.r.t sin^(-1) ((1-x^(2))/(1+x^(2))) is

Differentiate tan^(-1)((2x)/(1-x^2)) with respect to sin^(-1)((2x)/(1+x^2)) , if x in (-1,\ 1)

If sin^(-1) ((2a)/(1 +a^(2))) + sin^(-1) ((2b)/(1 + b^(2))) = 2tan^(-1) x , then x is equal to

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is :

If y = sin^(-1) (2xsqrt(1-x^(2))) + sec^(-1) (1/sqrt(1-x^(2))) then dy/dx =

Prove the following: 2tan^(-1)x=sin^(-1)((2x)/(1+x^(2))),+x+le1

If x ge 1 then 2 tan ^(-1) x+sin ^(-1)((2 x)/(1+x^(2)))=

3 sin ^(-1)((2 x)/(1+x^(2)))-4 cos ^(-1)((1-x^(2))/(1+x^(2))) +2 tan ^(-1)((2 x)/(1-x^(2)))=(pi)/(3) ( then ) x=