Home
Class 12
MATHS
int(0)^(4) (x + e^(2x)) dx....

`int_(0)^(4) (x + e^(2x)) dx`.

Text Solution

Verified by Experts

The correct Answer is:
`(15+e^(8))/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(oo) x e^(-x) dx=

int_(1)^(4)(x^(2) - x)dx .

int_(0)^(pi//4) cos^(2) x dx

int_(0)^(1)(1)/(x + 4 - x^2)dx .

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (a) int_(-1)^(1) sin^(5)x cos^(4)xdx .

Prove that int_(-a)^(a) dx = {(2int_(0)^(a) f(x) dx, if f(x) "is even"),(0, if f(x) "is odd"):} and hence evaluate (b) int_(-pi//2)^(pi//2) sin^(7) x dx .

int_(-1)^(0) (9x^(2)+2x+2 ) dx=

int_(0)^(2)[x^(2)]dx=

Find : int(2x^(2) + e^(x)) dx.