Home
Class 12
MATHS
int(4)^(5) e^(x) dx....

`int_(4)^(5) e^(x) dx`.

Text Solution

Verified by Experts

The correct Answer is:
`e^(4)(e-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-4)^(1) e^(x) dx .

int_(e)^(2) d^(x) dx as a limit of sum:

Prove that int_(0)^(25)e^(x-[x])dx=25(e-1) .

int_(0)^(5)(x + 1)dx .

If int_(-1)^(4) f(x) dx = 4 and int_(2)^(4) f(x) dx = 7 then int_2^(-1) f(x) dx =

lim_(x rarr oo) (int_(0)^(2x) xe^(2)dx)/(e^(4x^(2))) equals :

int_0^(oo) x e^(-x) dx=

Prove that int_(0 )^(a) f (x) dx = int_(0)^(a) f (a -x) dx hence evaluate int_(0)^(pi/2) ( cos^5 x)/( cos^2 x+ sinn ^5 x) dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (e) int_(0)^(2)xsqrt(2 - x) dx .

Evaluate: int_(0)^(2)e^(x)dx as a limit of sum.