Home
Class 12
MATHS
int(0)^(pi) log(1 + cos x)dx....

`int_(0)^(pi) log(1 + cos x)dx`.

Text Solution

Verified by Experts

The correct Answer is:
`-pilog2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(a)(x)dx = int_(0)^(a) f(a-x)dx and hence evaluate int_(0)^(pi/4)log (1 + tan x)dx .

Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .

int_(0)^(pi//2) log sin x dx =

Evaluate int _(0)^(pi/4) cos x dx

Evaulate int_(0)^(pi//4)log(1+tanx)dx .

Evaluate int_(0)^(4pi)|cos x| dx .

int_(0)^(pi//4)log ((sin x +cos x )/(cosx))dx is equal to

Evaluate int _(0)^(pi//2) sqrt(1+ cos x ) dx

int_0^(pi) (cos x +|cos x|) dx =

If I = int_0^(pi/4) log (1+ tan x) dx , then I =