Home
Class 12
MATHS
int0^1(dx)/(e^x+e^(-x)) is equal to...

`int_0^1(dx)/(e^x+e^(-x))` is equal to

A

`tan^(-1) (e^(x)) + C`

B

`tan^(-1) (e^(-x)) + C`

C

`log(e^(x)-e^(-x))+C`

D

`log(e^(x)+e^(-x))+C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int (dx)/(e^(x)+e^(-x)) dx =

int (x-1)e^(-x) dx is equal to :

If int_0^1 f(x) dx = 1, int_0^1 xf(x) dx = a, int_0^1 x^2 f(x) dx = a^2 , then int_0^1 (a - x)^2 f(x) dx is equal to :

int1/(1+e^(x))dx is equal to

int_0^(oo) x e^(-x) dx=

int_0^(10) |x(x-1)(x-2)| dx is equal to

int e^(e^(e^(x)))e^(e^(x))dx is equal to :

int 2e^(x)(cos x -sinx)dx is equal to :

int x^(3) e^(x^(2))dx is equal to :

int_(0)^(4) (x + e^(2x)) dx .