A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Similar Questions
Explore conceptually related problems
Recommended Questions
- If f(a + b - x) = fx, then inta^b x f(x) dx is equal to :
Text Solution
|
- If f(a+b-x)=f(x),\ then prove that\ inta^b xf(x)dx=(a+b)/2inta^bf(x)d...
Text Solution
|
- প্রমান করো: inta^b(f(x)dx)/(f(x)+f(a+b-x))=(b-a)/2
Text Solution
|
- If f(a + b - x) = fx, then inta^b x f(x) dx is equal to :
Text Solution
|
- If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf...
Text Solution
|
- If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf(x)...
Text Solution
|
- Prove that: inta^b(f(x))/(f(x)+f(a+b-x))dx=(b-a)/2
Text Solution
|
- If f(a+b-x)=f(x), then prove that inta^b xf(x)dx=(a+b)/2inta^bf...
Text Solution
|
- If f(a+b-x)=f(x),\ then prove that\ inta^b xf(x)dx=(a+b)/2inta^bf(x)d...
Text Solution
|