Home
Class 12
MATHS
find the general solution of (e^(x) + e^...

find the general solution of `(e^(x) + e^(-x))dy - (e^(x) - e^(-x)) dx = 0`

Text Solution

Verified by Experts

The correct Answer is:
`y = log (e^(x) + e^(-x)) + C`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x)) dx .

Find the general solution of e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0

int e^(x)/(e^(x)+1) dx =

int (dx)/(e^(x)+e^(-x)) dx =

int (e^(2x) - 2e^(x))/(e^(2x)+1) dx =

int (e^(x)-1)/(e^(x)+1) dx =

int ((e^(x)-e^(-x))dx)/((e^(x) + e^(-x)) log (cosh x) =

The general solution of the differential equation e^(x)dy + (ye^(x)+2x) dx =0 is

int e^(x log a).e^(x) dx =